Presentation to the Exploration Transportation Systems Strategic Roadmap Committee Steve Cook February, 2005 # **Briefing Purpose** # Present a strawman space transportation roadmap, philosophy and methodology for committee consideration # **Agenda** - Scope of Exploration Transportation - Space Transportation Needs by Spiral - Approach - Capability vs. Mission Need - Potential Themes - Strawman Space Transportation Roadmaps # **Potential Range of Space Transportation Missions** # **Exploration Transportation Routes** ## **Acquisition Timeline** # **Agenda** - Scope of Exploration Transportation - Space Transportation Needs by Spiral - Approach - Capability vs. Mission Need - Potential Themes - Strawman Space Transportation Roadmaps # **Approach** - Developed a transportation function vs. capabilities matrix for each Spiral. - Within each matrix, transportation capabilities were assessed to be probable, possible, or not applicable for included mission phases. - Themes and capabilities phasing across and within all Spirals were then derived from the matrices. # **Transportation Function Definitions** - Earth to Orbit Pre-launch through ascent to low Earth orbit - Earth Orbital Earth orbit phase of all Spirals and missions (including reentry from orbit) - ◆ Earth to Moon Transfer from Earth orbit to Lunar surface and surface operations (includes intermediate points such as L1, Lunar orbit, etc.) - Moon to Earth Return Ascent from Lunar surface to recovery at Earth's surface (includes return from intermediate points such as L1, Lunar orbit, etc.) - ◆ Earth to Mars Transfer from Earth orbit to Mars surface and surface operations (includes intermediate points) - Mars to Earth Return Ascent from Mars surface to recovery at Earth's surface (includes return from intermediate points) - Solar System Includes all non-Lunar and non-Mars science and exploration missions # **Agenda** - Scope of Exploration Transportation - Space Transportation Needs by Spiral - Approach - Approa - Capability vs. Mission Need - Potential Themes - Strawman Space Transportation Roadmaps # **Key Transportation Capabilities** - Transportation Elements Architecture level building blocks (systems) that require supporting systems / technologies / capabilities - Propulsion Systems Supporting propulsion technologies and capabilities - Vehicle Systems Supporting vehicle technologies and capabilities (non-propulsion) - Human Systems Systems, technologies and capabilities that support human space flight - Operations Pre-launch, launch and mission operations technologies and capabilities **Space Transportation Needs Assessment** Spiral 1 ## **Space Transportation Needs** Difference Between Spiral 1 and 2 **Space Transportation Needs** Spiral 2 # **Agenda** - Scope of Exploration Transportation - Space Transportation Needs by Spiral - Approach - Capability vs. Mission Need - Potential Themes - Strawman Space Transportation Roadmaps ## **Theme Area Development** Mapping to Capability Matrix #### **General Observations** - Earlier Spirals exercise, to varying extent, most technologies needed for Mars exploration missions - Many must be enhanced to meet later Spiral requirements (i.e., cryo fluid mgmt, radiation shielding, etc.) - Each Spiral also requires some new capabilities that were not required in earlier Spirals - Economy may be realized by building later Spiral requirements into new elements for that Spiral. 6815.18 ## **Theme: Earth to Orbit** - Current ELV's - Are likely to be able to satisfy all robotic and some cargo missions across all Spirals - May satisfy Spiral 1 with modifications for human rating - Shuttle hardware/systems may possibly be utilized in multiple applications - Commercial capability may be able to satisfy some lift requirements (e.g., propellant) - Spiral 1 may require a new upper stage for CEV launch - May initially use current engine designs - May also have applicability (e.g., cargo, in-space transfer) in later Spirals - Spirals 2 and 3 may require enhanced launch capability, unless a significant orbital assembly capability is developed - Spiral 4 will likely require significantly greater Initial Mass to Low Earth Orbit (IMLEO) than Spiral 1, 2 or 3 - This could be satisfied by heavier lift vehicles, propellant depots, more efficient launch/on-orbit assembly capability, etc. Crew Exploration Vehicle #### Options bounded as: - Basic CEV capability provides crew habitat for launch, minimal delta-V capability for orbit maneuvering and de-orbit, and reentry - Full CEV capability provides basic CEV capabilities, plus habitat function for in-space transfer and return, and trans-Earth injection delta-V - Likely to be an evolution in CEV requirements across Spirals (TPS, propulsion capacity, lifetime, etc.) - Automated rendezvous and docking is required across all Spirals - CEV propulsion may require cryo-fluid management capabilities - Lunar CEV may be capable of satisfying human ETO and return requirements for Spiral 4/5 #### Transfer Stages - Spirals 2 and 3 will likely require new capabilities: - A new in-space engine may be required - May require progressively larger stages (and corresponding larger lift capability) or multiple stages - May utilize non-nuclear advanced propulsion options - Spiral 4/5 may require significantly larger / multiple stages earlier Spirals - Likely even if an orbital assembly capability or advanced propulsion is developed. Nuclear Thermal Propulsion - Lunar cargo mission in Spiral 3 may be used to demonstrate Nuclear Thermal Propulsion (NTP) system capabilities. - Spiral 3 technologies provide basis for Spiral 4/5 highpower NTP propulsion options. - NTP potentially reduces IMLEO requirements and / or improves trip time compared to all-chemical propulsion mission options. - NTP ground test facilities must be addressed. #### Electric Propulsion - Low to medium power Electric Propulsion (EP) systems support robotic solar system exploration across all Spirals - Reusable low- to medium-power Solar EP systems reduce propellant requirements for Spiral 3 in-space tugs and lunar cargo - Evolve from current kW-class EP system technologies. - High power Nuclear Electric Propulsion (NEP) systems reduce IMLEO for Spiral 4/5 cargo (Mega Watt-class) and piloted (Multi-Mega Watt-class) missions - Possible options for high-power NEP have been identified: - Achieve high power by clustering low- to medium-power electrostatic thrusters (increases propulsion system mass and complexity) - Develop high-power, high-thrust density electromagnetic thrusters (currently at low TRL) - Facility requirements for high-power / long-life EP ground tests must be addressed Other Advanced Technology Options - Advanced In-Space Propulsion Technology (APT) includes aeroassist, solar sails, & tethers - Flight Demonstration is likely a prerequisite for infusion of these technologies - APT enables cargo and robotic missions with higher payload mass fraction than conventional chemical systems for all Spirals - APT has the potential to provide improved performance within a Spiral as the products of a technology maturation program are delivered - APT flight demonstration may be achieved in conjunction with the robotic exploration ## Theme: Descent / Surface Operations / Ascent Entry and Landing - Propulsion requirements will likely be driven by architecture decisions - Landers for Spirals 2 and 3 may be common, particularly when cargo is pre-deployed for Spiral 3 - Spiral 3 and subsequent Spirals may have unique precision landing requirements - Based upon need to rendezvous with pre-deployed surface assets (ballistic landing for Spiral 3 and aeroassist for Spiral 4/5) - Spiral 4/5 may require significantly larger landers (and corresponding greater initial mass in orbit) than Spirals 2 and 3 - Spiral 4/5 may have unique requirements based upon selection of the propulsion option, including potential for in-situ resources utilization ## Theme: Descent / Surface Operations / Ascent Ascent Propulsion - State-of-the-Art lander technology may be applicable for some robotic and cargo missions across all Spirals - Spiral 1 has only robotic ascent requirements, which can be addressed using SOA propulsion - Overall transportation architecture (e.g., common habitat/split habitat) may drive ascent requirements - Ascent technologies may be impacted by choice of propellant and the potential use of in-situ resources - Spiral 4/5 may require significantly larger ascent (and corresponding greater initial mass in orbit) than Spirals 2 and 3, even if advanced chemical propulsion is developed ## **Theme: Earth Capture / Reentry** - Spirals 1 through 3 may likely have little or no Earth return requirements beyond those already addressed using SOA technologies - ◆ Spiral 4/5 may have unique Earth return requirements (material, etc.) for aeroentry at Earth, depending on the magnitude of the entry velocities ## **Cross Cutting Theme: Crew Support** - Technology advancement may not be required for Spiral 1. - Advancements in radiation protection may be required for Spiral 2 and beyond - ◆ Longer duration missions (late Spiral 2, Spiral 3) may benefit from closed loop Environmental Control & Life Support Systems (ECLSS); required for Spiral 4/5 - Understanding the transportation system implications of artificial gravity or biomedical countermeasures is needed prior to implementation on Spiral 4/5 - Artificial gravity, if required, is a significant driver to transportation system design - Robust, highly reliable ECLSS, including in-flight repair capability is critical ## **Cross Cutting Theme: Vehicle Systems** - Vehicles systems include lightweight structures, deployable systems, radiation and MicroMeteoroid and Orbital Debris (MMOD) protection, GN&C, TPS, etc - Depending on CEV architecture, SOA vehicle system technologies may be appropriate for Spiral 1 - System technology improvements may be necessary to meet the requirements of later Spirals ## **Cross Cutting
Theme: Operations** - Limitations in launch vehicle lift capability will likely drive in-space assembly requirements - Spiral 4/5 trip times and communication lags for human flight may require a high degree of mission autonomy - Operational complexity will increase with mission duration - ◆ The amount of in-space infrastructure (depots, assembly, communications, etc.) will increase for later Spirals ## **Cross Cutting Theme: Operations (cont'd)** Spirals 1 through 3 will likely have no basic requirement for a propellant depot, but a depot may provide some advantages, including potential commercial participation, as early as Spiral 3 Solar Array ♦ If architecture studies indicate the desirability of depots in Spiral 4/5, early consideration should be given to demonstration during Spirals 2 and 3 H2 Tank Spiral 4/5 will have larger propellant / mission requirements that may make propellant / supply depot architectures viable # **Agenda** - Scope of Exploration Transportation - Space Transportation Needs by Spiral - Approach - Capability vs. Mission Need - Potential Themes Strawman Space Transportation Roadmaps # Roadmaps - Earth to Orbit - Transfer To and Orbital Operations - Destination Orbital Operations and Transfer From - Earth Capture / Reentry ^{*} Integrated the Crew Support, Vehicle Systems and Operations Themes due to their cross-cutting nature # **Earth to Orbit Roadmap** #### **Transfer To and Orbital Operations Roadmap** # Transfer To and Orbital Operations Roadmap (cont'd) #### **Descent / Surface Operations / Ascent Roadmap** NASA # Descent / Surface Operations / Ascent Roadmap (cont'd) NASA **Destination Orbital Operations and** **Transfer From Roadmap** NASA **Destination Orbital Operations and** Transfer From Roadmap (cont'd) ## Earth Capture / Reentry Roadmap ### **Space Transportation Needs Assessment** #### Spiral 1 | | | | , - | | , | Key | Transport | tation Functions | | | S | | | | |--|-----------------|-----------------|--------------------|--|--------------------------|-------------|----------------------|------------------|---------|--------------|--|---------------|--
--| | Van Tananastatian Canability | | rth To Orbit | | Earth Orbital | | to Moon | Moon | to Earth Return | | arth to Mars | | to Earth Retu | | lar System | | Key Transportation Capabilities
Transportation Elements | Robotic | Human Cargo | Robotic | : Human Cargo | Robotic | luman Cargo | Robotic | Human Cargo | Robotic | Human Cargo | Robotic | Human C | argo | Robotic | | ELV / EELV | | 0 | | | | | | | | | | | - 2 | | | EELV Derived | o | ö | | | | | - | | - | | - | | | | | Shuttle Derived | o | ö | | | | | | | - | | | | | | | Crew Exploration Vehicle | - | X | | 200 X 50.0 | | | | | - | | | | | | | Launch Escape System | _ | x | | A | | | - | | | | | | | | | Upper Stage / Transfer Stage | _ | A COL | X | X | DOM: NO. | | 9 X | | X | | X | | The state of | 10 Y 10 10 10 | | In-Space Propellant / Supply Depot | 1 | | Charles a state of | 100000000000000000000000000000000000000 | STATE A DESIGNATION OF | | Contract of the last | | | | A STATE OF THE PARTY OF | | Electric Section 1 | 10 3 Mg | | Planetary Capture / Entry | 1 | | | | SEEX SEE | | | | X | | | | 100000 | A X | | Planetary Landing | 1 | | | | | | | | X | | | | 10000 | | | Surface Mobility | | | | | 0 | | 0 | | x | | 0 | | | | | Planetary Ascent | | | | | | | X X | | | | X | | 1000000 | The state of s | | Reentry at Earth | | | 1000 Years | THE PERSON NAMED IN | | | | | | | | | - 1000 | | | Propulsion Systems | | | | THE RESERVE TO SERVE | | | | | | | | | | | | Chemical | | | | | | | | 2 (0.00) | | | | | | | | Liquid | | - 11 | | | | | | | | | | | | | | Cryogenics | HINGX SOCI | X | 0 | 0 | 0 | | 0 | | 0 | | 0 | | 10000 | 0 | | Storables | X | | No. | X | ŏ | | ŏ | | ŏ | | ŏ | | | ŏ | | Solid / Hybrid | × | 0 | | | ŏ | | ŏ | | ŏ | | ŏ | | 100 | ŏ | | Launch Assist | Ô | ő | | | | | | | | | | | | and the same of | | Nuclear Thermai | | | | | | | | | | | | | | | | Electric | | | | | | | | | | | | | | | | Low Power (<50kw) | | | 0 | | 0 | | 0 | | 0 | | 0 | | The same of | and the same | | Medium Power (50-500kw) | | | | | ŏ | | ŏ | | ŏ | | ő | | District of the last la | | | High Power (>500kw) | | | | | | | | | - | | | | | | | Propellantless | | | | - | | | | | | | | | | | | Aeroassist (Capture / Entry) | | | 0 | NOSX COST | | | 0 | | 0 | | 0 | | | 0 | | Sails | | | | | | | | | | | | | 1000 | ő | | Tethers | | | | | | | | | | | | | | | | Vehicle Systems | | | | | | 14.0 | | | | | | | | | | Lightweight Structures | 0 | 0 | 0 | | 0 | | X | | X | | 100 X | | 10000 | X | | Deployable Systems | | | 0 | | 0 | E021 | | | X | | X | | 2000 | X | | Radiation Hardening / Shielding | | | | 0 | o | | Ö | | Ö | | Ö | | 2000 | 0 | | MMOD Protection | | | | o l | | | | | | | The state of s | | | | | Efficient Thermal Systems | | | | | 0 | | 0 | | 0 | | 0 | | | 0 | | Avionics/Intelligent System Health Management | 2500 (0.00) | 100 X 0000 | STOCK SECTION | THESE COSTS | 1550 X 2504 | | 1000 MIN | | X | | No. | | - | | | Power (generation, conversion, distribution) | W 88 | x I | X III | X . | x | | Y | | x | | X | | 122500 | To the second | | Communications and Data Handling | × | x . | x | | x x | | x | | x | | X | | 2000 | X | | Guidance, Navigation & Control | | x . | Ŷ | X | | | Ŷ | | X | | - X | | 1 00000 | | | Reaction Control/Orbital Maneuvering | X | X I | × | X | No. X | | X X | | X | | K Syllis | | 60000 | X | | Cryo Fluid Management | | | o | 0 | 0 | | Ô | | Ô | | Ô | | 120,000 | - V. S | | Systems Engineering and Integration (inc. M&S) | No. of the last | Inc. O X Street | X | X | X | | Ne yes | | X | | CITY OF | | Reserve | X | | Human Systems | - | | - | | | | ****** | | | | | | | | | Life Support | | X | | X | | | | | | | | | | | | Radiation Protection | | | | | | | | | | | | | 30 II | | | Biomedical Countermeasures | | | | | | | | | | C | | | 12/11 | | | Crew Systems; In-space | | X | | 16 X 10 H | | | | | | | | | | | | Crew Systems; Surface | | | | | | | | | | | | | | | | Artifical Gravity | | | | | | | | | | | | | | | | Operations | | | | | | | | | | | | | | | | Automated | | 17 | | | | | | | | | | | - 1 | | | Rendezvous and Docking | | | Y | 0 | 0 | | 0 | | 0 | | 0 | (4) | - | 0 | | Manuevering | | | Ý | ŏ | 100 | | May and | | × | | X | | CHARGO | × | | Decision Making | | | Ô | | ò | | ô | | ô | | ò | | TO THE | | | On-Orbit Assembly and/or Repair (EVA) | | | | 0 | | | | | | | - | | | | | Launch and Payload Processing / Range | THAN X COLD | × | | | | | | | - | | | | | | | Recovery | | | 0 | X | | | 100 X 100 | | | | X | | The same | | | ISRU Propellants/Fluids | | | | A | | | ^ | | - | | - | | - | A CONTRACTOR OF THE PARTY TH | | Propellant Transfer | | | | | | | | | - | | | | | | | | | ALCOHOL: CORNEL | | Committee of the commit | Designative and the last | | Towns County | | | | | | - | | | Communications and Navigation Network | | | | | | | | | | | | | | | #### Difference Between Spiral 1 and 2 | | 70 <u>10</u> | ulle To C | late. | | Forth Only | | | | | Transport | ation Fur | nctions | FOUND TO | Mara ta Ca | dh Batura | Color Cont | |--|--------------|-----------|-------|---------|------------|-------|---------|--------|-------|-----------|-----------|---------|--
--|-----------|-------------------------| | ey Transportation Capabilities | | rth To Or | | | Earth Orbi | | | Human | | | to Earth | | Earth to Mars
Robotic Human Carg | Mars to Ear | | Solar Syster
Robotic | | ransportation Capabilities | KODOUC | numan | Cargo | RODOLIC | numan | Cargo | Robotic | riuman | Cargo | RODOUG | numan | Cargo | Robotic Human Garg | O RODOUC HUII | ian Cargo | Robotic | | ELV / EELV | | 0 | 0 | | _ | | | | | | | | | | | | | EELV Derived | X
O | 0 | 0 | | | | | _ | | | | | | | | | | Shuttle Derived | ŏ | Ö | 0 | | | | | | | | | | | | | | | Crew Exploration Vehicle | U | | U | | X | | | X | | | X | | | | | | | Launch Escape System | _ | X | | | | | | ^ | | | ^ | | | | | | | | | ^ | | X | X | | | Х | 0 | | X | | X | X | | X | | Upper Stage / Transfer Stage | | | | ^ | Α. | | | ^ | 0 | | ^ | | | A | | Α | | In-Space Propellant / Supply Depot | _ | | _ | | | | | v | 0 | | | | X | | | | | Planetary Capture / Entry | _ | | | | | | | X | | | | | STATE OF THE PARTY | | | X | | Planetary Landing | _ | | | | | | | X | 0 | | | | X | v | | Х | | Surface Mobility | _ | | | _ | - | | | 0 | | | v | | ^ | X | | | | Planetary Ascent | | | | | | | | | | | X | | | , A | | | | Reentry at Earth | | | | X | N A | | | | | | X | | | X I | - 1 | Х | | opulsion Systems | | | | | | | | | | | | | | | | | | Chemical | _ | | | | | | | | | | | | | 2 | | | | Liquid | | - | | | | | | | | | ** | | | | | | | Cryogenics | X | X | Х | 0 | 0 | 0 | | Х | 0 | | X | | 0 | 0 | | 0 | | Storables | X | | | X | X | X | | 0 | 0 | 1 % | X | | 0 | 0 | | 0 | | Solid / Hybrid | Х | 0 | 0 | | | | | | | | | | 0 | 0 | | 0 | | Launch Assist | 0 | 0 | 0 | | | | | | | | | | | 2 | | | | Nuclear Thermal | | | | | | | | | | | | | | 5 | | | | Electric | | | | | | | | | | | | | 100 | | | | | Low Power (<50kw) | | | | 0 | 5 15 | 0 | | | | | | | 0 | 0 | | X | | Medium Power (50-500kw) | | | | | | | | | | | | | 0 | 0 | | X | | High Power (>500kw) | | | | | | | | | | | | | | 3 | | | | Propellantless | | | | | | | | | | | 1000 | | | A CONTRACTOR OF THE PARTY TH | | - | | Aeroassist (Capture / Entry) | | | | 0 | X | | | | | | X | | 0 | 0 | | X | | Sails | 7 | | | | | | | | | 1 3 | | | | | | X | | Tethers | | | | | | | | | | | | | | | | | | ehicle Systems | | | | | | | | | | | | | | | | | | Lightweight Structures | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | | 0 | | 0 | X | | X | | Deployable Systems | | | .445 | 0 | | 0 | | X | 0 | | X | | 0 | X | | X | | Radiation Hardening / Shielding | | | | | 0 | | | X | 0 | | X | | 0 | 0 | | 0 | | MMOD Protection | | | | | 0 | | | X | 0 | | | | | | | | | Efficient Thermal Systems | 1 | | | | | | | X | 0 | | X | | 0 | 0 | -3 | 0 | | Avionics/Intelligent System Health Management | X | | X | Х | X | X | | X | 0 | | X | | | X | | X | | Power (generation, conversion, distribution) | X | | Х | Х | X | Х | | Х | 0 | | X | | X | X | | | | Communications and Data Handling | X | X | X | X | X | X | | X | 0 | | X | | × | X | | X | | Guidance, Navigation & Control | X | Х | Х | Х | X | Х | | Х | 0 | | Х | | X | X | | X | | Reaction Control/Orbital Maneuvering | X | X | Х | Х | X | Х | | X | 0 | 7 1 | Х | | X S | X | | X | | Cryo Fluid Management | | | | 0 | 0 | Х | | X | 0 | | X | | 0 | 0 | | | | Systems Engineering and Integration (inc. M&S) | X | X | X | Х | X | X | | X | X | | X | | X | X | | X | | uman Systems | | | - | | - | - " | | - " | | | | | | | | | | Life Support | | X | | | X | | | Х | | | X | | | | | | | Radiation Protection | | | 100 | | | | | X | | | X | | | | | | | Biomedical Countermeasures | | | | | | | | | | | - Maria | | | | | | | Crew Systems; In-space | | X | | | X | | | X | | | х | | | | | | | Crew Systems; Surface | | | | | | | | x | | | - ^ | | | | | | | Artifical Gravity | | | | | | | | ^_ | | | | | | | | | | perations | | | | | | | | | | | | | | | | | | Automated | | | | | | | | | | | | | | | | | | Rendezvous and Docking | | | | X | X | X | | 0 | 0 | | X | | 0 | 0 | | 0 | | Manuevering Manuevering | | | | x | x | x | | X | 0 | | x | | | X | | Ÿ | | Decision Making | | | | ô | ^ | ô | | ô | 0 | | ô | | 0 | ô | | Ŷ | | On-Orbit Assembly and/or Repair (EVA) | | | | U | 0 | 0 | - | 0 | 0 | | 0 | | | U | | ^ | | | | v | v | | U | U | | 0 | 0 | | U | | | | | | | Launch and Payload Processing / Range | X | X | X | - 0 | | | | | | | Y | | | Y | | - | | Recovery | | | | 0 | X | | | | | | X | | | X . | | | | ISRU Propellants/Fluids Propellant Transfer | | | | | | - | | - | | | | | | | | | | | | | | 1 | | 0 | | 0 | 0 | | | | | | | | | Communications and Navigation Network | Y. | | | | | X | _ | X | 0 | | X | | Company of the Compan | | | | Spiral 2 | | | rth To Ort | | | Earth Orbi | | | arth to Mo | on | | to Earth | Return | | irth to Mars | | | o Earth R | | Solar System | |--|--
--|---------|--------------------|--------------|-------------|---------|---|--|---------|----------------------|--------|--|--------------|-------|--|-----------|-------
--| | ey Transportation Capabilities | Robotic | Human | Cargo | Robotic | | ransportation Elements | ELV / EELV | X | 0 | 0 | | | | | | | | | | | | - iii | | | | | | EELV Derived | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | Shuttle Derived | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | Crew Exploration Vehicle | | X | | | Mark Mark | | | × | | | X | | | | | | | | | | Launch Escape System | | X | | | | | | | | | | | | - 1 | | | | 8 | | | Upper Stage / Transfer Stage | | | | X | TO X | | | Street, Square | 0 | | TO XX | | X | | | X | | | | | In-Space Propellant / Supply Depot | Planetary Capture / Entry | | | | | | | | X | 0 | | | | X | | | | | | X | | Planetary Landing | | | | | | | | X | 0 | | | | X | | - 1 | | | | ENAME DE | | Surface Mobility | | | | | | | | 0 | | | | | -X | | | X | | | | | Planetary Ascent | | | | | | | | | | | 10 X-31 | 1 | | | | X | | V 7 | X TO THE REAL PROPERTY. | | Reentry at Earth | | | | To you | Acres 6 | | | | | | Y | | | | | X | | | × | | opulsion Systems | Chemical | Liquid | | | | - | | | | | | | | | | - 1 | | | | | | | Cryogenics | X | and X and | X | 0 | 0 | 0 | | TATE RES | 0 | | To the last the last | | 0 | | | 0 | | | 0 | | Storables | × | man A stable | | - | × | × | | o | Ö | | X | | ö | | | ö | | | 0 | | | X | 0 | 0 | X | | The second | | 0 | V | | THE REAL PROPERTY. | | ö | | | ö | | - | ö | | Solid / Hybrid | | | | _ | + | | 3 | - | | | | | 0 | | | 0 | | | U | | Launch Assist | 0 | 0 | 0 | | + | - | | - | | | - | | | | | | | | | | Nuclear Thermal | | | | - | - | | | | | | | | | | | | | | | | Electric | | | | | | | | | | | | | | | - 1 | | | | | | Low Power (<50kw) | | | | 0 | | 0 | | | | | | | 0 | | | 0 | | | X. | | Medium Power (50-500kw) | | | | | | | | | | | | | 0 | | | 0 | | | X | | High Power (>500kw) | | | | | | | | | | 4 = 4 | | | | | | | | | | | Propellantless | Aeroassist (Capture / Entry) | | | | 0 | X | | | | | | X | | 0 | | | 0 | | | | | Sails | Tethers | ehicle Systems | Lightweight Structures | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | N = 1 | 0 | | 0 | | | X | | =_11 | X | | Deployable Systems | | | | 0 | | 0 | | X | 0 | | X | | 0 | | | X | | | | | Radiation Hardening / Shielding | | | | | 0 | | | THE REAL PROPERTY. | 0 | | X | | 0 | | | 0 | | | 0 | | MMOD Protection | | | | | 0 | | | | 0 | | - | | | | | | | | | | Efficient Thermal Systems | | | | | | | | X | 0 | | X | | 0 | | | 0 | | | 0 | | Avionics/Intelligent System Health Management | - X | mark X annual | No. No. | X | X | COST Y COST | | X | 0 | | X | | | | = 1 | X | | | | | Power (generation, conversion, distribution) | X X | X | × | X | × | X | | × × | 0 | | X | | PARTY AND REAL PROPERTY. | | | X | | | | | Communications and Data Handling | × | X | X | X | X | X | | × | o | | X | | × | | | X | | | × | | Guidance, Navigation & Control | × | X | × | X | X | X | | × | o | | X | | × | | | Ŷ. | | | | | Reaction Control/Orbital Maneuvering | x | X | Ŷ | X | | X | | x | 0 | | X | | | | | | | | The state of s | | Cryo Fluid Management | And the last of th | | | Ô | 0 | X | | X | o | | X | | 0 | | | ô | | | | | Systems Engineering and Integration (inc. M&S) | × | CONTRACTOR OF STREET | | X | × | | | 0 | No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa | | | | | | | | | | The Assessment of Assessme | | iman Systems | A COLOR | ALL DAVISORS OF THE PARTY TH | - | No. of Concession, | - CONTRACTOR | Maria Maria | | multiple to | No. | | | | A | Life Support | _ | X | | - | X | | | DECEMBER OF THE PERSON | | | X | | | | | | | | | | Radiation Protection | | | | - | - | | | | | | X | | | | | | | | | | Biomedical Countermeasures | | | | - | | | | 7.7 | | | | | | | 11/0 | | | | | | Crew Systems; In-space | | X | | - | X | | | | | | X | | | | - 1 | | | | | | Crew Systems; Surface | | | | - | | | | X | | | | 100 | | | 100 | | | | | | Artifical Gravity | perations | _ | | | , | _ | , | | | | | _ | | _ | | | | | | | | Automated | | | | | | | | | | | | -14 | | | | | | | | | Rendezvous and Docking | | | | X | X | X | | 0 | 0 | | V. X | | 0 | | | 0 | | | 0 | | Manuevering | | | | X | X | X | | X | 0 | | X | 1 | X | | | - X | | | × | | Decision Making | | | | 0 | | 0 | | 0 | 0 | | 0 | 4 | 0 | | | 0 | | - | X | | On-Orbit Assembly and/or Repair (EVA) | | | | | 40 | 0 | | 0 | 0 | | 0 | | | | 8 1 | | - 0 - | | | | Launch and Payload Processing / Range | - X | 000 X 1752 | X | | | | | | | | | | | | 7 | | | | | | Recovery | | | | 0 | X | | 17 | | | | X | 1 7 | | | | X | 17.19 | - | X | | ISRU Propellants/Fluids | | | | | | | | | | - | | | | | | | | | | | Propellant Transfer | | | | | | 0 | | 0 | 0 | | | | | | | | | | | | Communications and Navigation Network | 10000-1000 | | ¥ | 1000 | - | Delta de | | CONTRACTOR OF THE PERSON NAMED IN | Ö | | 1000 S A | | The same of sa | | | SALES AND DESCRIPTION OF THE PERSON NAMED IN | #### Difference Between Spiral 2 and 3 | | | rth To O | rbit | | Earth Orb | ital | - | rth to Mo | Key | Transport | to Earth | Poturo | _ | rth to Mar | | Marc | to Earth | Poturo | Color Custo | |---|---------|----------|-------|---------|-----------|-------|---------|-----------|-------|-----------|----------|--------|------------|------------|-------|---------|----------|--------|-------------------------| | (au Tanana datina Canabilitia | | | | | | | | | | | | | | | | | | | Solar System
Robotic | | Key Transportation Capabilities | Robotic | Human | Cargo | Kobotic | Human | Cargo | Robotic | | ransportation Elements | | | | |
 | | _ | | | | | | | - | | _ | | | | ELV / EELV | X | 0 | 0 | | - | _ | | | | | | | | | | | | | | | EELV Derived | 0 | 0 | 0 | _ | | | | | | | | | | | - 1 | | | | | | Shuttle Derived | 0 | 0 | 0 | | - | | | | | | | | | | | | | | | | Crew Exploration Vehicle | | X | | | X | | | X | | | X | | | | | | | | | | Launch Escape System | | X | | | | | | | | | | | | | | - | | | - 15 | | Upper Stage / Transfer Stage | | | | X | X | | | X | Х | | X | 0 | X | | | X | | | X | | In-Space Propellant / Supply Depot | | | | | | 0 | | | 0 | | | 0 | | | | | | | | | Planetary Capture / Entry | | | | | | | | X | Х | | | | X | | | | | | X | | Planetary Landing | | | | | | | | | X | | | | X | | | | | | | | Surface Mobility | | | | | | | | X | Х | | | | X | | | | | | | | Planetary Ascent | | | | | | | | - | - 10 | | | | - | | | X | | | | | Reentry at Earth | | | | X | X | | | | | | X | | 1 | | | X | | | X | | Propulsion Systems | Chemical | | | | | | | | | | | | | | 1 | - 1 | | | 120 | | | Liquid | Cryogenics | X | X | Y | 0 | 0 | 0 | | Y | Х | | X | | 0 | | 7 | 0 | | | 0 | | Storables | x | ^ | ^ | × | × | x | | ô | ô | _ | x | | ŏ | | | ŏ | | | ŏ | | | X | 0 | 0 | _^ | _ ^ | ^_ | | U | U | | _ ^ _ | | Ö | | | 0 | | | 0 0 | | Solid / Hybrid | | | | | - | - | | | | | | | U | | | U | | | 0 | | Launch Assist | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | Nuclear Thermal | | | | | | | | | 0 | | | | | | | | | | | | Electric | Low Power (<50kw) | | | | 0 | 3 0 | 0 | | | 0 | (1 | | 0 | 0 | | - 7 | 0 | | | × | | Medium Power (50-500kw) | | | | | | | | | 0 | 1 | | 0 | 0 | | | 0 | | | | | High Power (>500kw) | | | | | | | | | | | | | A STATE OF | | 7 | | | | | | Propellantless | Aeroassist (Capture / Entry) | | | | 0 | X | | 1. | | | | X | | 0 | | | 0 | | | X | | Sails | | | | | | | | | | | | | | | | | | | X | | Tethers | | | | | | | | | 0 | | | | | | | | | | | | ehicle Systems | Lightweight Structures | 0 | 0 | 0 | 0 | | 0 | | 0 | Х | | 0 | 0 | 0 | | | Х | | | Y . | | Deployable Systems | _ | | - | ŏ | | 0 | | X | x | | X | o | ŏ | | | Ŷ | | | - 0 | | Radiation Hardening / Shielding | | | | - | 0 | | | | x | | | ő | ő | - | _ | ô | | | ô | | MMOD Protection | | | _ | - | 0 | | | X | | | X | | U | | - | U | _ | | U | | | | | - | _ | U | | | Х | X | | | 0 | | - | | | | _ | | | Efficient Thermal Systems | | | | | | - | 1.0 | X | Х | 5 | X | 0 | 0 | | - 2 | 0 | | | 0 | | Avionics/Intelligent System Health Management | X | Х | X | Х | X | X | | X | Х | | X | 0 | | | | Х | | | X | | Power (generation, conversion, distribution) | X | Х | X | X | X | X | | X | Х | | X | 0 | X | | | X | | | X | | Communications and Data Handling | X | X | X | X | X | X | | X | Х | 5 | X | 0 | X | | | X | | | X | | Guidance, Navigation & Control | X | X | X | X | X | X | | Х | X | | X | 0 | X | | | X | | | X | | Reaction Control/Orbital Maneuvering | X | | X | X | X | X | | | Х | | | 0 | X | | | | | | | | Cryo Fluid Management | | | | 0 | 0 | X | | X | Х | J. O. | X | 0 | 0 | | į. | 0 | | | 1971 | | Systems Engineering and Integration (inc. M&S) | X | | X | X | X | X | | X | X | | X | 0 | X | | - 1 | X | | | | | uman Systems | Life Support | | X | | | X | | | X | | 1 | Х | | | | | | | | | | Radiation Protection | | | | | | | | X | | 3 | X | | | | | | | | | | Biomedical Countermeasures | _ | | | | 1 | | | | | | - | | | | | | | | | | Crew Systems; In-space | | X | | | X | | | X | | | X | | | | | | | | | | | | ^ | | | ^ | | | × | | | ^ | | | | | | | | | | Crew Systems; Surface | | | | | - | | | Α | | | | | - | | | | | | | | Artifical Gravity | perations | | | _ | 1 | | _ | | | | | | | | | | | | | | | Automated | | | | | | | | | | | | | | | - 1 | | | | | | Rendezvous and Docking | | | | X | X | X | | 0 | 0 | | X | 0 | 0 | | | 0 | | | 0 | | Manuevering | 1 | | | X | X | X | | X | Х | (H | X | 0 | X | | | X | | | X | | Decision Making | | | | 0 | | 0 | | 0 | Х | | 0 | 0 | 0 | | | 0 | | | X | | On-Orbit Assembly and/or Repair (EVA) | | | | | 0 | 0 | | 0 | Х | § 1 | X | | | | 1 | | | | | | Launch and Payload Processing / Range | X | X | X | | | | | | | | | | | | | | 1 | | | | Recovery | | | | 0 | X | | | | | | X | | | | | Х | | | X | | ISRU Propellants/Fluids | | | | | | | | 0 | | | 0 | | | | 10 | | | | | | | | | | | _ | | | | | | - | | | | | | | 4 | | | | | | | | 0 | 0 | | 0 | Y | | | 0 | | | | | | | | | Propellant Transfer Communications and Navigation Network | | V | V | 0 | 0 | Ô | | O
X | X | | X | 0 | | | | | | | | #### Spiral 3 | | E | rth To O | rbit | | Earth Orbi | tal | Earth | to Mo | | ransport | to Earth | | Fo | rth to Mars | | Mare t | o Earth R | eture | Solar Syste | |--|--|---|-----------------|---------------------|-------------------|---------------|-----------|-------|-----------|----------|-----------|--|------------|-------------|-------|----------|-----------|-------
--| | ey Transportation Capabilities | | | | | | | Robotic H | | | | | | | | araa. | | | | Robotic | | ransportation Capabilities | Robouc | numan | Cargo | Roboac | Human | Cargo | RODOUC F | luman | Cargo | RODOBC | numan | Cargo | RODOUC | Human C | argo | RODOUC | numan | Cargo | Robotic | | ELV / EELV | V X | 0 | 0 | | | | - | | | | | | | | | | | | | | EELV Derived | ô | ö | ö | | + | - | | | | | | | | | | | | | | | | ŏ | ö | 0 | | - | - | | | | | | | | | | _ | | | | | Shuttle Derived | 0 | | | | The second second | | | 100 | | | X | | _ | | | _ | | | | | Crew Exploration Vehicle | _ | X | | - | X | | - | X | | | Link Arms | | | | - | _ | | | | | Launch Escape System | | X | | | | | | | | | - | | | | | | | | Company of the Company | | Upper Stage / Transfer Stage | | | - | STATE OF THE PARTY. | X | | 200 | X | X | | X | 0 | X | | | X | | | X | | In-Space Propellant / Supply Depot | | | | | - | 0 | | | 0 | | | 0 | | | | | | | THE RESERVE TO SERVE THE | | Planetary Capture / Entry | _ | | - | - | | | | X | X | | | | X | | | | | | X | | Planetary Landing | | | | - | | | | X | X | | | | X | | | | | | X | | Surface Mobility | | | | | | | | X | X | | | | X | | | X | | | | | Planetary Ascent | | | | | | | | | | | X | | | -11 | | X | | | X X | | Reentry at Earth | | | | X | * X | | | | | | X | | | | | X | | | × | | opulsion Systems | Chemical | Liquid | | | | | | | | | | | | | | | 1.77 | | | | | | Cryogenics | Hara X coul | X | Ci X | 0 | 0 | 0 | 100 | X | × | | X | | 0 | 7 7 | | 0 | | | 0 | | Storables | X | | | X | X | × | | 0 | 0 | | | | 0 | | | 0 | | | 0 | | Solid / Hybrid | X | - 0 | 0 | | | | | | | | | | 0 | | - 5 | 0 | | | 0 | | Launch Assist | 0 | 0 | 0 | | | | | | | | | | | | | | | | - | | Nuclear Thermal | | | | 1 | | | | | 0 | 1 1 1 1 | | | | | | | | | | | Electric | | | | | | | | | | | | | | | | | | 14- | | | Low Power (<50kw) | | | | 0 | | 0 | | | 0 | | | 0 | 0 | | | 0 | | | E | | Medium Power (50-500kw) | _ | | | - | | - | | | ŏ | | | ŏ | ŏ | | | ŏ | | | | | High Power (>500kw) | | | - | - | + | - | | | | | | - V | | | | - | | | A STATE OF THE PARTY. | | | _ | | - | - | - | - | | | | | | | | | | _ | | | | | Propellantless | | | | | | | | | | | | | | | | | - | | | | Aeroassist (Capture / Entry) | | | | 0 | X | | | | | | X | | 0 | 3.555 | | 0 | | | POST X 100 | | Sails | | | | - | | | | | | | | | | | | | | | X | | Tethers | | | | | | | | | 0 | | | | | | _ = 5 | | | | | | hicle Systems | Lightweight Structures | 0 | 0 | 0 | 0 | | 0 | | 0 | X | | 0 | 0 | 0 | | | X | | | X | | Deployable Systems | | | | 0 | | 0 | 100 | | X | | | 0 | 0 | | | X | | | | | Radiation Hardening / Shielding | | | | | 0 | | | | X | | | 0 | 0 | | | 0 | | | 0 | | MMOD Protection | | | | | 0 | | | X | X | | | 0 | | | | | | | | | Efficient Thermal Systems | | | | | | | | X | X | | To Xun) | 0 | 0 | | | 0 | | | 0 | | Avionics/Intelligent System Health Management | X | X | X | No. | X | X | 100 | X | X | | X | 0 | | | | X | | W = 1 | X | | Power (generation, conversion, distribution) | X | X | X | X | X | X | | X | X | | X | 0 | X | | | X | | | X | | Communications and Data Handling | 250 4 0 0 | No. | × | X | X | X | | × | X | | X | 0 | X | | | X | | | X | | Guidance, Navigation & Control | THE NAME OF THE OWNER, | - X | | X | X | X | | | X | | X | 0 | X | | | × | | | The second second | | Reaction Control/Orbital Maneuvering | 000 X 445 | X | 0.0001 | No. | The same | X | 0 | X | X | | X | o | | | | 2 | | | | | Cryo Fluid Management | 100000 | Maria de la constantina della | | Ö | 0 | X | | X | X | | X | 0 | O | 100 | | o | | | | | | X | X | Anna Xana | X | a management | | | 2 | Ŷ | | Ŷ | ŏ | 100 Y 100 | | | - X 5000 | | | X | | Systems Engineering and Integration (inc. M&S) | Α | · · · · | Section Section | 1000 | | Black All St. | 000 | 300 | A | | A | U | No. of the | | | A | | | A STATE OF THE PARTY PAR | | ıman Systems | Life Support | | X | | - | X | | 200 | X | | | X | | | | | | | | | | Radiation Protection | | | | - | | - | | X | | | X | | | | | | | | | | Biomedical Countermeasures | | | | - | | | | | | | | | | | | | | | | | Crew Systems; In-space | | X | | | X | | | X | | | X | | | | - 1 | | | | | | Crew Systems; Surface | | | | | | | 28 |) X | | | | | | | | | | | | | Artifical Gravity | | | | | | | 1 m | | | | | | | | | | | 3 | | | perations | | | | | | | | | | | | | | | | | تنجمه | | | | Automated | | | | | | | | | | 7. E. S | | | | | | | | | | | Rendezvous and Docking | | | | X | A X | X X | | 0 | 0 | | X | 0 | 0 | | | 0 | | | 0 | | Manuevering | | | | X | X | X | | X | N. Carlot | | × | 0 | X | | | X | | | × | | Decision Making | | | | Ô | 1 | Ö | | ô | x | | Ô | ŏ | o | | | Ö | | | X | | On-Orbit Assembly and/or Repair (EVA) | | | | The second second | 0 | o | | ö | X | | | THE RESERVE OF THE PARTY | | | | | | | | | Launch and Payload Processing / Range | III X III | X | The Marie | | | - | - | U | ^ | | _ ^ | | | | | _ | | | | | | Harry Av. and | - | A | | Total Control | | | | | | CONT. | | | | | | | | | | Recovery | | | | 0 | X | | | | | | N. Alter | | | | | X | | | Market Mark | | ISRU Propellants/Fluids | | | | | | | | 0 | | | 0 | | | | | | | | | | Propellant Transfer | | | | 0 | 0 | 0 | | 0 | 7 14 | | | 0 | | | - 1 | | | | | | Communications and Navigation Network | X | | | | X | | | | | | X | | 1000 | | | | | | | #### Difference Between Spiral 3 and 4/5 | y Transportation Capabilities supportation Elements ELV / EELV EELV Derived Shuttle Derived Crew Exploration Vehicle Launch Escape System Upper Stage / Transfer Stage | | Human | Cargo | | Earth Orbi | | Robotic | th to Mo
Human | | | to Earth I
Human | | Robotic | rth to Ma | | | to Earth F
Human | | Solar System
Robotic | |--|--------------|-------|-------|-----|------------|-----|---------|-------------------|----|----------|---------------------|---|---------|-----------|--------|-----|---------------------|-----|-------------------------| | ELV / EELV EELV Derived Shuttle Derived Crew Exploration Vehicle Launch Escape System Upper Stage / Transfer Stage | ELV / EELV EELV Derived Shuttle Derived Crew Exploration Vehicle Launch Escape System Upper Stage / Transfer Stage | EELV Derived Shuttle Derived Crew Exploration Vehicle Launch Escape System Upper Stage / Transfer Stage | | | 0 | | | | | | | i i | | | | | | | | | | | Shuttle Derived
Crew Exploration Vehicle
Launch Escape System
Upper Stage / Transfer Stage | | 0 | 0 | | | | | | | | | | | | | | | | | | Crew Exploration Vehicle
Launch Escape System
Upper Stage / Transfer Stage | | 0 | 0 | | | | | | | | | | | | | | | | | | Launch Escape System Upper Stage / Transfer Stage | | X | | | Х | | | X | | | X | | | X | | | X | | | | Upper Stage / Transfer Stage | | x | X | X | | | X | ¥ | | X | 0 | X | X | 0 | X | Х | 0 | X | | In-Space Propellant / Supply Depot | | | | | | 0 | | | ô | | | o | | ô | ō | - ~ | ô | 0 | | | Planetary Capture / Entry | | | | _ | - | | | Α. | ¥ | | | | y. | X | 0 | | | - | Y. | | Planetary Landing | | | | | _ | | | x | x | | | | x | x | 0 | | | | - Ç | | Surface Mobility | _ | | | | 1 | | | x | x | | | | x | x | 0 | X | | | | | Planetary Ascent | _ | | | - | 1 | | - | | _^ | | X | | _ ^ | _^ | 0 | x | Х | | Y | | | | | | v | | | | | | | 0 | | | | | - | x | | - 0 | | Reentry at Earth | | | | | A | | 11 | | | | | | | | - 4 | | ٨ | | ^ | | opulsion Systems | _ | | _ | | | | | _ | | _ | | | | | _ | | | | | | Chemical | _ | | | _ | | | | | | | | | 2 2 | | | | | | | | Liquid | | - | | | | | | | | | | | - | | | | |
| | | Cryogenics | X | X | X | 0 | 0 | 0 | | X | X | | X | | 0 | X | 0 | 0 | Х | | 0 | | Storables | X | | | X | X | X | | 0 | 0 | 1 | X | | 0 | 0 | 0 | 0 | Х | | 0 | | Solid / Hybrid | X | 0 | 0 | | | | | | | | | | 0 | | | 0 | | | 0 | | Launch Assist | 0 | 0 | 0 | | | | | | | | | | 2 | | | | | | | | Nuclear Thermal | | | | | | | | | 0 | | | | | 0 | 0 | | 0 | 0 | 0 | | Electric | | | | | | | | | | 1 1 | | | | | | | | | | | Low Power (<50kw) | | | | 0 | 1 1 | 0 | | | 0 | | | 0 | 0 | | - | 0 | (4) | | × | | Medium Power (50-500kw) | | | | | | | | | 0 | | | 0 | 0 | | 0 | 0 | | 0 | X | | High Power (>500kw) | | | | | | | 100 | | | | | | - | 0 | 0 | | 0 | 0 | | | Propellantless | Aeroassist (Capture / Entry) | | | | 0 | X | | | | | | X | | 0 | 0 | X | 0 | Х | | X | | Sails | _ | | | | - 0 | | | | | | | | | _ | ô | _ | ^ | | Ŷ | | Tethers | _ | | _ | _ | 1 | | | | 0 | | | | | | 0 | | | | | | hicle Systems | | _ | 0 | 0 | 0 | 0 | | 0 | | 0 | X | | 0 | 0 | 0 | v | V | X | 0 | 0 | X | | Lightweight Structures | | | U | ő | | ő | | × | x | | × | ŏ | ő | X | X
O | 0 | X | 0 | x | | Deployable Systems | _ | | _ | - 0 | 0 | - | | -0 | â | | -0 | ő | ő | | 0 | ô | x | 0 | ô | | Radiation Hardening / Shielding | - | | _ | - | 0 | | | | | - | ^ | | U | X | | U | X | | 0 | | MMOD Protection | _ | | | _ | 0 | | | X | X | | - | 0 | | X | 0 | | | 0 | | | Efficient Thermal Systems | - | - | - | | | - | | X | X | | X | 0 | 0 | Х | 0 | 0 | Х | 0 | 0 | | Avionics/Intelligent System Health Management | X | X | X | X | X | X | | X | Х | | X | 0 | | Х | 0 | Х | X | 0 | X | | Power (generation, conversion, distribution) | X | Х | X | X | X | X | | X | X | | X | 0 | X | Х | 0 | Х | X | 0 | X | | Communications and Data Handling | X | X | X | X | X | X | | X | X | | X | 0 | X | X | 0 | Х | X | 0 | X | | Guidance, Navigation & Control | X | X | X | X | X | Х | | X | Х | | Х | 0 | X | Х | 0 | Х | Х | 0 | Х | | Reaction Control/Orbital Maneuvering | × | | X | X | X | X | | X | X | | X | 0 | X | Х | 0 | X | Х | 0 | | | Cryo Fluid Management | A CONTRACTOR | 10.0 | | 0 | 0 | X | | X | X | | X | 0 | 0 | Х | 0 | 0 | Х | 0 | | | Systems Engineering and Integration (inc. M&S) | X | X | X | X | X | X | | | Х | | X | 0 | X | Х | Х | X | X | 0 | | | ıman Systems | Life Support | | X | | | X | | | X | | | X | | | Х | | | X | | | | Radiation Protection | | | 100 | | | | | X | | | X | | | X | | | X | | | | Biomedical Countermeasures | | | | | | | | | | | 10000 | | | X | | | | | | | Crew Systems; In-space | | X | | | X | | | X | | | X | | | X | | | X | | | | Crew Systems; Surface | | | | | | | | × | | | | | | x | | | | | | | Artifical Gravity | | | | | | | | _^_ | | | | | | ô | | | | | | | perations | المهماني | Automated | _ | | - | Y | Y | Y | | 0 | 0 | | Y | 0 | 0 | 0 | 0 | 0 | v | 0 | 0 | | Rendezvous and Docking | _ | | - | | | - 0 | | ÿ | | | . | 0 | ÿ | 0 | | Ü | X | 0 | Ü | | Manuevering | _ | | | _ X | Х | | | A | X | - 1 | ^ | 0 | | X | 0 | A . | X | 0 | X | | Decision Making | | | - | 0 | | 0 | | 0 | X | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | X | | On-Orbit Assembly and/or Repair (EVA) | | | | | 0 | 0 | | 0 | X | 1 | X | | | X | 0 | | X | | | | Launch and Payload Processing / Range | X | X | X | | | | | | | | | | | | | | | | | | Recovery | | | | 0 | X | | | | | | X | | | | | X | X | | X | | ISRU Propellants/Fluids | | | 1 | | 1 | | | 0 | | <u> </u> | | | 1 | Х | 1 | | 0 | n 2 | | | Propellant Transfer | | | | 0 | 0 | 0 | | 0 | X | | | 0 | 1 | 0 | 0 | | 0 | 0 | | | Communications and Navigation Network | X | X | X | X | X | X | | X | × | 1 0 | | | | X | 0 | | X | | · · · | Spiral 4/5 | | | | -614 | _ | Forth Oct | | | | | Transport | | | | | | | | | Cales Cuete | |--|-----------------|------------|---------|--|---|-------|--------
---|----------------|-----------|-------------------|-------|---------|------------|----------------|--------------|--|----------|--| | by Transportation Capabilities | | orth To O | | | Earth Orbit Human | | | arth to Mo | | | to Earth I | | | arth to Ma | | | to Earth I | | Solar Syste
Robotic | | ansportation Elements | RODOGC | numan | Cargo | Robott | Human | Cargo | Robouc | numan | Cargo | RODOUC | numan | Cargo | Robotic | Human | Cargo | Robout | Human | Cargo | KODOBC | ELV / EELV | NAME OF TAXABLE | 0 | 0 | _ | | | | _ | | | | | | | | | - | \perp | | | EELV Derived | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | Shuttle Derived | 0 | 0 | 0 | | | | | | | | | | | | | | THE RESERVE RE | | | | Crew Exploration Vehicle | | X | | | X | | | X | | | X | | | X | | | X | | | | Launch Escape System | | X | | | | | | | | | | | | | | | | | | | Upper Stage / Transfer Stage | | | | X | X | | | X | X | | X | 0 | X | X | 0 | X | X | 0 | 100==0 Y0X=0 | | In-Space Propellant / Supply Depot | | | | | | 0 | | | 0 | | | 0 | | 0 | 0 | | 0 | 0 | | | Planetary Capture / Entry | | | | | | | | X | X | | | | 100 X | X | 0 | | | | X | | Planetary Landing | | | | | | | | X | X | | | | X | X | 0 | | | | | | Surface Mobility | | | | | | | | X | X | | | | X | | 0 | X | Ü. | | | | Planetary Ascent | | | | | | | | | | | CONTRACTOR | | | | | X | X | | X | | Reentry at Earth | | | | The Name of Street, or other teams, and the street, st | Track et al. | | | | | | | | | | | X | X | | | | opulsion Systems | Chemical | Liquid | - | | | | 1 | | | | | | | | | | | | | | | | Cryogenics | X | restX as | X X | 0 | 0 | 0 | | THE REAL PROPERTY. | X | 97 | X | | 0 | COOK 455 | 0 | 0 | X | | 0 | | Storables | X | The second | | Sec. 187 | | × | | o . | 0 | | X | | ŏ | o | ŏ | ö | X | | ŏ | | Solid / Hybrid | - x | 0 | 0 | | | | | 0 | - | | 1000 | | ŏ | - | | ŏ | A COLUMN | | Ö | | | Ô | ö | 0 | | + | | | | | | | | - | | | - | | | - | | Launch Assist Nuclear Thermal | 0 | 0 | 0 | | + | | | - | 0 | | | - | - | | | | 0 | | 0 | | | | | - | - | | | | | U | | | | | 0 | 0 | | 0 | 0 | 0 | | Electric | | | - | | | | | | Name of Street | | | | | | | | | | | | Low Power (<50kw) | | | | 0 | | 0 | | _ | 0 | | | 0 | 0 | | | 0 | | | | | Medium Power (50-500kw) | | | | | | | | | 0 | | | 0 | 0 | | 0 | 0 | | 0 | X | | High Power (>500kw) | | | | | | | | | | | | | | 0 | 0 | | 0 | 0 | | | Propellantless | Aeroassist (Capture / Entry) | | | | 0 | X | | | | | | | | 0 | 0 | X | 0 | X | | X X | | Sails | | | | | | | | | | | | | | | 0 | | | | | | Tethers | | | | | | | | | 0 | | | | | | 0 | | | | | | hicle Systems | Lightweight Structures | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | 4.0X | | 0 | 0 | 0 | X | X | X | 0 | 0 | X | | Deployable Systems | | | | 0 | | 0 | | X | X | | X | 0 | 0 | X | 0 | X | X | 0 | X | | Radiation Hardening / Shielding | | | | | 0 | | | | X | | X | 0 | 0 | X | 0 | 0 | X | 0 | 0 | | MMOD Protection | | | | | 0 | | | X | X | | and the second | 0 | | X | 0 | | Control of the Control | 0 | | | Efficient Thermal Systems | | | | | | | | Disk Kall | X | | 10 mg/(m) | 0 | 0 | 000 X | 0 | 0 | THE RESERVE | 0 | 0 | | Avionics/Intelligent System Health Management | 6505X605 | X | ALL YOU | X | TOTAL NAME OF | an X | | × | 3.5 X 100 | | X | 0 | | X | o | X | X | 0 | CONTROL X AND D | | Power (generation, conversion, distribution) | X | X | × | × | X | X | | | X | | X | o | A X | X | o | 100 | X | o | The state of s | | Communications and Data Handling | X | , i | x | X | X | X | | × | × | | × | o | X | X | o | × | X | ŏ | 2000 X | | Guidance, Navigation & Control | X | X | â | Ŷ. | X | x | | X | x | | x | ŏ | X | x | ŏ | X | X | ŏ | X | | Reaction
Control/Orbital Maneuvering | WILL X BUT | 100 | X | × | X | X | | E X | X | | E-5X | o | X | No. | ŏ | X | Ŷ | ŏ | CONTRACTOR OF THE PARTY | | | 2000 | | 1000 | 0 | o | X | | CONTRACTOR OF THE PARTY | x | | N N X G S S | ö | Ô | x | 0 | ô | x | ö | ALL STATES | | Cryo Fluid Management | No. of Xines | | | _ | X | | | 100 A 100 | | | 2000 | 0 | × | | | | 200 | | with X | | Systems Engineering and Integration (inc. M&S) | A. C. | | | X | - | A | | | | | The Real Property | U | A. | A STATE | A Committee of | | A. | 0 | A Commence | | ıman Systems | Life Support | | X | | - | X | | | X | | | X | | | X | | - | No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa | \vdash | | | Radiation Protection | | | | | | | | × | | | X | | | X | | | X | - | | | Biomedical Countermeasures | | | | | | | | | | | | | | X | | | | | | | Crew Systems; In-space | | X | | | X | | | - 1 | | | W.Xee | | | X | | | X | | | | Crew Systems; Surface | | | | | | | | - 10 (A) | | | | | | X | | | | | | | Artifical Gravity | | | | | | | | | | | | | | 0 | | | | | | | perations | Automated | Rendezvous and Docking | | | | X | X | X | | 0 | 0 | | 55112 X (200 | 0 | 0 | 0 | 0 | 0 | N. X. | 0 | 0 | | Manuevering | | | | - X | X | X | | × | X | | L.X | 0 | X | X | 0 | X | X | o | X | | Decision Making | | | | 0 | 1 | 0 | | 0 | X | | Ö | 0 | 0 | 0 | o | 0 | X | ŏ | X | | On-Orbit Assembly and/or Repair (EVA) | - | | | | 0 | 0 | | 0 | X | | EB 40 | | - | X | o | | No. | | | | Launch and Payload Processing / Range | on X Sun | CONTRACTOR | AND YOU | | | | | | | | | | | | | | | | | | Recovery | | - ^ | - | 0 | X | | | | | | III (X- | | | | | X | A STATE OF THE PARTY OF | | Version XX or | | CAMPINATE A | | | - | | DATE OF THE PARTY | | | 0 | | | | | | · · | | | 0 | | Control of the Contro | | | | | | | | | | | | | | | | | | 1 | | | | | ISRU Propellants/Fluids | | | - | | - 0 | 100 A | | | | | | | | | | | | | | | | X | | | 0 | 0 | 0 | | ō | X | | X | 0 | X | 0 | 0 | to the later | O. | 0 | | # **Analysis of Capability Need Across Spirals** | | 44 | - 10 C M (10 C) | VP-00 - 100 | | | - 200 | un 2005 | and more and | Key Tr | ansporta | tion Func | tions | | TOTAL SALL POLICE | | or when | 1.32 000 | www. | | |--|------------|------------------|-------------|---------|------------|-----------|---------|--------------|---------|----------|-----------|-------|---------|-------------------|--------------|---------|------------|-------|--------------| | | | rth To Or | | | arth Orbi | | | rth to Mo | | | to Earth | | | arth to Ma | | | to Earth F | | Solar System | | Key Transportation Capabilities | Robotic | Human | Cargo | Robotic | | Transportation Elements | ELV / EELV | 4/0/4 | 0/4/4 | 0/3/3 | | | | | | | | | | | | | | | | | | EELV Derived | 0/4/4 | 0/4/4 | 0/3/3 | | | | | | | | | | | | | | | | | | Shuttle Derived | 0/4/4 | 0/4/4 | 0/3/3 | | | | | | | | | | | | | | | | | | Crew Exploration Vehicle | | 4/0/4 | | | 4/0/4 | | | 3/0/3 | | | 3/0/3 | | | 1/0/1 | | | 1/0/1 | | | | Launch Escape System | | 4/0/4 | | | | | | | | | | | | | | | | | | | Upper Stage / Transfer Stage | | | | 4/0/4 | 4/0/4 | | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | In-Space Propellant / Supply Depot | | | | 0.000 | .0.0.0.0.0 | 0/2/2 | | | 0/2/2 | | 30 180000 | 0/2/2 | | 0/1/1 | 0/1/1 | 5.07.60 | 0/1/1 | 0/1/1 | 111711710 | | Planetary Capture / Entry | | | | | | | 1/0/1 | 3/0/3 | 2/1/3 | | | | 4/0/4 | 1/0/1 | 0/1/1 | | | | 4/0/4 | | Planetary Landing | | | | | | | 1/0/1 | 3/0/3 | 2/1/3 | | | | 4/0/4 | 1/0/1 | 0/1/1 | | | | 4/0/4 | | Surface Mobility | | | | | | | 0/1/1 | 2/1/3 | 2/0/2 | 0/1/1 | | | 4/0/4 | 1/0/1 | 0/1/1 | 3/1/4 | | | CRONOLL | | Planetary Ascent | | | | | | | | | | 1/0/1 | 3/0/3 | | | | 1 6 | 4/0/4 | 1/0/1 | | 4/0/4 | | Reentry at Earth | | | | 4/0/4 | 4/0/4 | | | | | 1/0/1 | 3/0/3 | | | | | 4/0/4 | 1/0/1 | | 4/0/4 | | Propulsion Systems | Chemical | | | | | | | 8 8 | | | | | | | | | | | | | | Liquid | _ | Cryogenics | 4/0/4 | 4/0/4 | 3/0/3 | 0/4/4 | 0/4/4 | 0/3/3 | 0/1/1 | 3/0/3 | 2/1/3 | 0/1/1 | 3/0/3 | | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | 1/0/1 | | 0/4/4 | | Storables | 4/0/4 | 4/0/4 | oruro | 4/0/4 | 4/0/4 | 3/0/3 | 0/1/1 | 0/3/3 | 0/3/3 | 0/1/1 | 3/0/3 | | 0/4/4 | 0/1/1 | 0/1/1 | 0/4/4 | 1/0/1 | | 0/4/4 | | Solid / Hybrid | 4/0/4 | 0/4/4 | 0/3/3 | 41014 | 4/0/4 | 3/0/3 | 0/1/1 | urara | 0/3/3 | 0/1/1 | arura | | 0/4/4 | 0/1/1 | 0/1/1 | 0/4/4 | 1/0/1 | - | 0/4/4 | | | 0/4/4 | 0/4/4 | 0/3/3 | | | | Uriri | | | 0/1/1 | | _ | 0/4/4 | | | 0/4/4 | | | 0/4/4 | | Launch Assist | 0/4/4 | 0/4/4 | 0/3/3 | | | | | | 0/0/0 | | | | | 0/4/4 | 0/4/4 | | 0/4/4 | 0/1/1 | 0/4/4 | | Nuclear Thermal | | | | | | | | | 0/2/2 | | - | | | 0/1/1 | 0/1/1 | | 0/1/1 | 0/1/1 | 0/1/1 | | Electric | | | | | | 21212 | ***** | | | | - | | | | | ***** | | | | | Low Power (<50kw) | _ | | | 0/4/4 | | 0/3/3 | 0/1/1 | | 0/2/2 | 0/1/1 | | 0/2/2 | 0/4/4 | | | 0/4/4 | | ***** | 4/0/4 | | Medium Power (50-500kw) | | | | | | | 0/1/1 | | 0/2/2 | 0/1/1 | | 0/2/2 | 0/4/4 | | 0/1/1 | 0/4/4 | | 0/1/1 | 3/0/3 | | High Power (>500kw) | | | | | | | | | | | | | | 0/1/1 | 0/1/1 | | 0/1/1 | 0/1/1 | | | Propellantless | Aeroassist (Capture / Entry) | | | | 0/4/4 | 4/0/4 | | | | | 0/1/1 | 3/0/3 | | 0/4/4 | 0/1/1 | 1/0/1 | 0/4/4 | 1/0/1 | | 3/1/4 | | Sails | | | | | | | | | | | 1 | | | | 0/1/1 | | | | 3/1/4 | | Tethers | | | l, l, | | | | l l | | 0/2/2 | | | | | | 0/1/1 | | | U | | | Vehicle Systems | Lightweight Structures | 0/4/4 | 0/4/4 | 0/3/3 | 0/4/4 | | 0/3/3 | 0/1/1 | 0/3/3 | 2/1/3 | 1/0/1 | 0/3/3 | 0/2/2 | 1/3/4 | 1/0/1 | 1/0/1 | 4/0/4 | 0/1/1 | 0/1/1 | 4/0/4 | | Deployable Systems | | | | 0/4/4 | _0005 | 0/3/3 | 0/1/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 1/3/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Radiation Hardening / Shielding | | | | | 0/4/4 | LAUX CIT. | 0/1/1 | 3/0/3 | 2/1/3 | 0/1/1 | 3/0/3 | 0/2/2 | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | | MMOD Protection | | | | | 0/4/4 | | | 3/0/3 | 2/1/3 | | | 0/2/2 | | 1/0/1 | 0/1/1 | | | 0/1/1 | | | Efficient Thermal Systems | La vinania | | | | | | 0/1/1 | 3/0/3 | 2/1/3 | 0/1/1 | 3/0/3 | 0/2/2 | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | | Avionics/Intelligent System Health Management | 4/0/4 | 4/0/4 | 3/0/3 | 4/0/4 | 4/0/4 | 3/0/3 | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 1/0/1 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Power (generation, conversion, distribution) | 4/0/4 | 4/0/4 | 3/0/3 | 4/0/4 | 4/0/4 | 3/0/3 | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Communications and Data Handling | 4/0/4 | 4/0/4 | 3/0/3 | 4/0/4 | 4/0/4 | 3/0/3 | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Guidance, Navigation & Control | 4/0/4 | 4/0/4 | 3/0/3 | 4/0/4 | 4/0/4 | 3/0/3 | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Reaction Control/Orbital Maneuvering | 4/0/4 | 4/0/4 | 3/0/3 | 4/0/4 | 4/0/4 | 3/0/3 | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Cryo Fluid Management | 47074 | 47074 | 01010 | 0/4/4 | 0/4/4 | 3/0/3 | 0/1/1 | 3/0/3 | 2/1/3 | 0/1/1 | 3/0/3 | 0/2/2 | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | 1/0/1 | 0/1/1 | 47074 | | Systems Engineering and Integration (inc. M&S) | 4/0/4 | 4/0/4 | 3/0/3 | 4/0/4 | 4/0/4 | 3/0/3 | 1/0/1 | 3/0/3 | 3/0/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 1/0/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Human Systems | 410/4 | 47074 | 01010 | 41014 | 4/0/4 | Ururu | 17011 |
01010 | 3/0/3 | Trort | 51015 | UILIL | 4/0/4 | 17011 | 170/1 | 4/0/4 | 17071 | Uriri | 47074 | | Life Support | _ | 4/0/4 | | - | 4/0/4 | | | 3/0/3 | | | 3/0/3 | | | 1/0/1 | _ | | 1/0/1 | - | | | | _ | 4/0/4 | | | 4/0/4 | | | | | _ | | | | | | | | | | | Radiation Protection | | | | | | | | 3/0/3 | | | 3/0/3 | | | 1/0/1 | | | 1/0/1 | _ | | | Biomedical Countermeasures | _ | 41014 | | | 41074 | | _ | 0.10.10 | | _ | 2/0/2 | | | 1/0/1 | | | 4.10.14 | | | | Crew Systems; In-space | | 4/0/4 | | | 4/0/4 | | | 3/0/3 | | | 3/0/3 | | | 1/0/1 | | | 1/0/1 | | | | Crew Systems; Surface | - 1 | | | | | | | 3/0/3 | | | | | | 1/0/1 | - | | | | | | Artifical Gravity | | | | | | | | | | | | | | 0/1/1 | | | | | | | Operations | Automated | | | | 1 | | | | | | | | | | | | | | 1 | | | Rendezvous and Docking | | | | 4/0/4 | 3/1/4 | 3/0/3 | 0/1/1 | 0/3/3 | 0/3/3 | 0/1/1 | 3/0/3 | 0/2/2 | 0/4/4 | 0/1/1 | 0/1/1 | 0/4/4 | 1/0/1 | 0/1/1 | 0/4/4 | | Manuevering | | | | 4/0/4 | 3/1/4 | 3/0/3 | 1/0/1 | 3/0/3 | 2/1/3 | 1/0/1 | 3/0/3 | 0/2/2 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | 1/0/1 | 0/1/1 | 4/0/4 | | Decision Making | | | | 0/4/4 | | 0/3/3 | 0/1/1 | 0/3/3 | 2/1/3 | 0/1/1 | 0/3/3 | 0/2/2 | 0/4/4 | 0/1/1 | 0/1/1 | 0/4/4 | 0/1/1 | 0/1/1 | 4/0/4 | | On-Orbit Assembly and/or Repair (EVA) | | | | | 0/4/4 | 0/3/3 | | 0/3/3 | 2/1/3 | | 2/1/3 | | | 1/0/1 | 0/1/1 | | 1/0/1 | | | | Launch and Payload Processing / Range | 4/0/4 | 4/0/4 | 3/0/3 | | 2011/01/20 | 2/2533 | | 10000000 | 110.000 | | S12-0190 | | | 11000 | The state of | | - WARD - 1 | | | | Recovery | | | | 0/4/4 | 4/0/4 | | | | | 1/0/1 | 3/0/3 | | | | | 4/0/4 | 1/0/1 | | 4/0/4 | | ISRU Propellants/Fluids | | | | | | | | 0/2/2 | | | 0/1/1 | | | 1/0/1 | | | 0/1/1 | | 200700 | | Propellant Transfer | | | | 0/2/2 | 0/2/2 | 0/3/3 | | 0/3/3 | 2/1/3 | | | 0/2/2 | | 0/1/1 | 0/1/1 | | 0/1/1 | 0/1/1 | Legend: Number of Probable / Potential / Total